تقسیم بازار با استفاده از شبکه های عصبی مصنوعی مطالعه موردی: فرآورده های گوشتی (سوسیس)

Authors

طهمورث حسنقلی پور

سید مهدی میری

علی مروتی شریف آبادی

abstract

تقسیم بازار با شبکه های عصبی مصنوعی، سابقه طولانی در دنیا ندارد. به طور عمده، این روش در دنیا، از چندین سال پیش در مدیریت گردشگری به صورت گسترده آغاز گردید و پس از آن به سایر حوزه های بازاریابی نیز سرایت کرد. امروزه این روش در کنار روشهای آماری از شایعترین شیوه های تقسیم بندی مشتریان بوده و روزبه روز در حال گسترش است. در این تحقیق به دلیل ضرورت شناخت مشتریان هدف برای یک شرکت تولیدکننده فرآورده های گوشتی، نیاز به استفاده از روشی مؤثر برای بخش بندی مشتریان احساس گردید و در نهایت روش تحلیل خوشه ای با شبکه های عصبی خودسازمان دهنده ، که به خوشه بندی مشتریان اختصاص داشته و نمونه های زیادی از کاربرد آن در دنیا تجربه گردیده است، انتخاب و مورد استفاده قرار گرفت. برای انجام تحقیق، در ابتدا معیارهای مفید در بخش بندی مشتریان مشخص شده و بر اساس آن پرسشنامه ای طراحی گردیده است. پس از جمع آوری پرسشنامه ها و اخذ اطلاعات، با استفاده از شبکه های عصبی مصنوعی، مشتریان خوشه بندی گردیدند و در نهایت نتایج به دست آمده مورد تبیین و تحلیل قرار گرفته است. همچنین مقایسه روش شبکه های عصبی برای خوشه بندی با روشهای کلاسیک خوشه بندی مشتریان با استفاده از روش آماری k-means انجام شده است.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

تقسیم بازار مقدمه ای بر انتخاب بازار هدف از روشهای سنتی تا استفاده از شبکه های عصبی مصنوعی

بی تردید در عرصه نوین رقابت میان شرکتها، بدست آوردن یا از دست دادن حتی یک مشتری نیز حائز اهمیت است. تعدد شرکتها و رقابت، آنها را ناگزیر می سازد تا جهت دستیابی به گروهی از مشتریان تلاش نمایند چرا که دستیابی به تمام مشتریان در این رقابت شدید غیر ممکن شده است. بدین ترتیب شرکت ها احساس می کنند به تقسیم بازار و بخش بندی نیاز دارند. البته اصل این نیاز از گذشته احساس می شد و بر آن اساس تقسیم بندیهای س...

full text

مدلسازی تخصیص ناوگان اتوبوسرانی شهری با استفاده از شبکه های عصبی مصنوعی (مطالعه موردی: مشهد مقدس)

استفاده از سیستم اتوبوسرانی درون شهری با توجه به انعطاف پذیری بالا و ارزان بودن آن برای استفاده کننده، در شهرهای بزرگ و به ویژه در کشورهای در حال توسعه امری اجتناب ناپذیر است. از این رو بهبود این سیستم حمل و نقل بدلیل گستره فعالیت آن ضروری به نظر می رسد. یکی از رو شهای ارتقای عملکرد این سیستم، تخصیص بهینه اتوبو سها به خطوط فعال به گونه ای است که نسبت به وضعیت موجود، تعداد مسافر بیشتری حمل نموده...

full text

تقسیم بازار مقدمه ای بر انتخاب بازار هدف از روشهای سنتی تا استفاده از شبکه های عصبی مصنوعی

بی تردید در عرصه نوین رقابت میان شرکتها، بدست آوردن یا از دست دادن حتی یک مشتری نیز حائز اهمیت است. تعدد شرکتها و رقابت، آنها را ناگزیر می سازد تا جهت دستیابی به گروهی از مشتریان تلاش نمایند چرا که دستیابی به تمام مشتریان در این رقابت شدید غیر ممکن شده است. بدین ترتیب شرکت ها احساس می کنند به تقسیم بازار و بخش بندی نیاز دارند. البته اصل این نیاز از گذشته احساس می شد و بر آن اساس تقسیم بندیهای س...

full text

پیش¬بینی جریان روزانه با استفاده از شبکه¬های عصبی مصنوعی و عصبی- موجکی (مطالعه موردی: رودخانه باراندوزچای)

پیش­بینی دقیق جریان در رودخانه­ها یکی از مهمترین ارکان در مدیریت منابع آبهای سطحی به ویژه جهت اتخاذ تدابیر مناسب در مواقع سیلاب و بروز خشکسالی­ها است. به دلیل اهمیت پیش­بینی جریان رودخانه، در این تحقیق جریان روزانه رودخانه­ی باراندوزچای در دو ایستگاه بی­بکران و دیزج طی یک دوره­ی آماری 20 ساله با استفاده از مدل عصبی- موجکی (WNN) که تلفیق آنالیز موجک و شبکه عصبی مصنوعی (ANN) می­باشد، پیش­بینی گرد...

full text

مدل‌سازی انرژی ستانده واحدهای پرورش مرغ گوشتی با استفاده از روش شبکه عصبی مصنوعی (مطالعه موردی: استان مازندران)

صنعت مرغداری به لحاظ تأمین بخش عمده‌ای از نیازهای غذایی و پروتئینی کشور از اهمیت قابل توجهی برخوردار است. در این تحقیق به بررسی مدل‌سازی مصرف انرژی تولید مرغ گوشتی پرداخته شده است. به این منظور اطلاعات مورد بررسی از 45 تولیدکننده مرغ گوشتی به طور تصادفی در استان مازندران جمع‌آوری گردید. ابتدا میزان انرژی مصرفی و شاخص‌های انرژی محاسبه و سپس با استفاده از شبکه عصبی مصنوعی به مدل‌سازی انرژی ستانده...

full text

پیش‌بینی قیمت گاز طبیعی با استفاده از ترکیب تبدیل موجک و شبکه عصبی مصنوعی (مطالعه موردی: بازار آمریکا)

در این مقاله تلاش شده ‏است با استفاده از ترکیب تبدیل موجک و شبکه عصبی مدلی به‌منظور پیش‌بینی روزانه قیمت گاز طبیعی ارائه شود. در این مدل ترکیبی، از موجک گسسته دابیشز به‌منظور تجزیه سری زمانی قیمت استفاده شده‏، سپس ضرایب تقریبات و جزئیات مؤثر به‌عنوان ورودی شبکه عصبی به‌منظور پیش‌بینی قیمت گاز طبیعی هنری هاب به‌عنوان مرجعی برای قیمت گاز طبیعی در آمریکا به‌کار رفته ‏است. مقایسه عملکرد نسبی مدل تر...

full text

My Resources

Save resource for easier access later


Journal title:
پژوهش های مدیریت در ایران

Publisher: دانشگاه تربیت مدرس

ISSN 2322-X200

volume 11

issue ویژه نامه پیاپی 55 2010

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023